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ABSTRACT 

The High-Fidelity Generalized Method of Cells (HFGMC) is one technique for 

accurately simulating nonlinear composite material behavior. The HFGMC uses a 

higher-order approximation for the subcell displacement field that allows for a more 

accurate determination of the subcell stress/strain fields at the cost of some 

computational efficiency. In order to reduce computational costs associated with the 

solution of the ensuing system of simultaneous equations, the HFGMC global system 

of equations for doubly-periodic repeating unit cells with nonlinear constituents was 

reduced in size through the use of a Petrov-Galerkin-based Proper Orthogonal 

Decomposition order-reduction scheme. A number of cases were presented that 

address the computational feasibility of using order-reduction techniques to solve solid 

mechanics problems involving complex microstructures.  
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INTRODUCTION 

 

The High-Fidelity Generalized Method of Cells (HFGMC) is a micromechanics 

technique that can be used to simulate nonlinear composite materials [1]. The core 

computational effort of this method involves repeatedly finding the solution to sets of 

simultaneous equations in order to establish effective properties and solve a boundary 

value problem of interest. However, when material nonlinearity is admitted, the 

computational runtimes can become excessive, particularly as the problem size is 

increased. Nonlinear analyses of higher-fidelity repeating unit cells (RUCs) are needed 

to accurately simulate realistic composite microstructures necessary for process 

modeling, prediction of residual stress states, progressive failure analysis, and other 

computational predictions that depend heavily on subscale features. The use of order-

reduction techniques is one possibility to improve the computational efficiency of 

high-fidelity analyses. 

A significant fraction of studies employ Proper Orthogonal Decomposition (POD) 

[2-3] to generate order-reduced models. POD is commonly used in the finite element 

community to reduce the dimensionality of a large set of simultaneous equations. The 

goal of POD in this context is to generate a set of basis functions capable of capturing 

the dominant components of a system. These basis functions are then used to 

optimally represent a full set of equations and provide a mapping relationship between 

the normal and reduced domains. POD-based order-reduction techniques have been 

previously used to solve nonlinear problems in computational micromechanics [4-7]. 

For instance, Radermacher et al. [4] was able to obtain a 60-260 computational speed-

up by employing a POD-based order-reduction technique for an inelastic metal matrix 

composite.  

In the present work, the HFGMC global system of equations for doubly-periodic 

RUCs with nonlinear constituents is reduced in size through the use of POD. This 

approach previously was shown to yield significant computational savings when 

applied to the HFGMC equations for linearly elastic materials only [8]. The order-

reduced HFGMC models are then compared to the traditional HFGMC approach for 

multiple RUCs in order to assess their computational efficiency. 

 

 

HIGH-FIDELITY GENERALIZED METHOD OF CELLS (HFGMC) 

 

The HFGMC is a micromechanics technique used for modeling heterogeneous 

materials [1]. In contrast to the generalized method of cells [1], the HFGMC gives a 

higher accuracy in the subcell stress/strain fields at the cost of computational 

efficiency by employing a higher-order subcell displacement field. Using the 

HFGMC, a doubly or triply periodic RUC is discretized into an arbitrary number of 

subcells (see Figure 1). A doubly-periodic RUC may be defined in the y2-y3 plane and 

is discretized into Nβ and Nγ subcells along the y2-direction (height) and the y3-

direction (width), respectively, while the inclusions (fibers) extend infinitely in the y1-

direction (length). A local -  coordinate system may be defined relative to 

the centroid of each subcell. The height and length of each subcell are given by  and 

, respectively. The discussion that follows presents key aspects of the HFGMC 

formulation that are relevant to this study. An exhaustive derivation of the HFGMC 

can be found in Ref. [1].  



 

 
Figure 1. A heterogeneous composite with a doubly-periodic microstructure comprised of a) multiple 

repeating RUCs. b) A single RUC of dimensions H x L comprised of a number of individual subcells. c) 

An individual subcell of dimensions hβ x lγ. Here, xi, yi, and  refer to global, RUC, and subcell 

coordinates, respectively (i = 1…3). Figure from Ref. [1]. 

 

HFGMC Subcell Equations 

 

Each subcell in an RUC is assigned material properties and a constitutive law to 

describe the local material behavior. The constitutive law for thermoinelastic materials 

is given by Eq. 1: 

 

 
(1) 



where , , , and  are the stress, stiffness, thermal strain, and 

inelastic strain tensors, respectively. The stress tensor is used to calculate surfaced-

averaged tractions, , along the edges of a subcell as a function of the unknown 

fluctuating displacements. The computational efficiency of the HFGMC can be 

significantly improved by reformulating  to be a function of surface-averaged 

fluctuating displacements (unknowns) [9-10]. A linear system of 12 equations can be 

derived and expressed as: 

 

 
 

(2) 

where  represents the unknown surface-averaged fluctuating displacements, 

 is a vector containing subcell material properties and macroscale strain 

components, and  is a vector containing thermoinelastic components. The 

12 x 12 subcell stiffness matrix, , contains subcell material properties and 

dimensions and does not depend on any inelastic parameters. 

 

HFGMC Global Equations 

 

By imposing interfacial traction and displacement continuity conditions, and 

periodic boundary conditions, an assembled, linear system of equations can be 

derived. For perfectly bonded constituents, the reformulated HFGMC relationships 

can be expressed as a square system of n = 6NβNγ equations of the form: 

 

  
 

(3) 

where K is a sparse, unsymmetrical matrix that is a function of subcell properties and 

geometry, f is a vector containing the material properties/dimensions and the applied 

average strains, and g is a vector containing material properties/dimensions and the 

thermoinelastic contribution. The vector  represents the unknown surface-averaged 

fluctuating displacements for each subcell. These equations must be iteratively solved 

at each loading increment, and the solution is used to determine subcell stresses and 

strains. In the present HFGMC formulation, each row of K effectively represents a 

traction continuity equation. The terms containing the unknown surface-averaged 

fluctuating displacements are collected on the left-hand side of Eq. 3, and all other 

terms are collected on the right-hand side. In general, K must be assembled each time 

the constituent properties of a subcell change. Ongoing work is aimed at developing a 

direct assembly procedure similar to that for finite element problems [11-12] in order 

to only update components of K that change.  

 

HFGMC Solution Procedure 

 

In a typical HFGMC analysis, the assembled HFGMC system of n equations is 

solved multiple times, each with distinct boundary conditions and input parameters. In 

general, the equations are solved six times to establish the mechanical strain 

concentration tensor. This tensor is used to calculate the effective elastic stiffness and 

thermal stress tensors of the composite. The mechanical strain concentration tensor 

does not depend on the inelastic material state [1]. If all elastic material properties are 



temperature independent, this step is only performed for the first loading increment 

(i.e., the effective properties are constant). When thermoelastic/thermoinelastic 

materials are considered, this step must be performed every increment where a 

temperature change occurs.  

Additionally, for each loading increment, an iterative solution procedure is 

required to achieve converged inelastic fields. The Mendelson method [13-14] was 

used to integrate the classical plasticity equations at each integration point within a 

subcell. In the HFGMC, the global system of equations is solved two times per 

iteration per increment: once to solve the actual boundary value problem under 

consideration and another to update the inelastic field quantities for the next 

iteration/increment. Order-reduction techniques are hence an attractive option to 

reduce the computational cost associated with repeatedly assembling/solving the 

HFGMC system of equations. 

 

 

ORDER-REDUCTION CONCEPTS APPLIED TO THE HFGMC 

 

Proper Orthogonal Decomposition (POD) 

 

As previously mentioned, POD is a technique that can be used to optimally 

represent a large system of equations. Suppose that the solution to Eq. 3 (i.e.,  of 

length n) can be obtained a priori. The vector  can be expressed by  where 

 is a set of n arbitrary orthonormal basis vectors that span the 

solution space and  is a coefficient vector of length n. The goal of POD is to 

determine an approximate solution to ,  where  is a set 

of the first k vectors of ,  is a vector comprised of the first k components of , and 

. Note that for optimal computational performance, k << n.  

The method of snapshots [15] was used to determine the set of k orthonormal basis 

vectors and, hence, the size of the reduced set of equations. Suppose that the solution 

to Eq. 3 (i.e., U) for an RUC under a particular set of applied strains/stresses is known 

at a given increment (or iteration). This solution (i.e., a “snapshot”) can be assigned to 

the first column of a new matrix, M. Additional columns of M can be populated using 

any converged (or pre-converged) incremental solutions to Eq. 3 for a given RUC 

architecture. A singular value decomposition (SVD) of the snapshot matrix, M, can be 

performed and is expressed as: 

 

   (4) 

where V and Z are the left- and right-singular vectors, respectively, and Σ is a diagonal 

matrix of singular values arranged in descending order. The matrix V is then used to 

populate  [2]. 

 

Order-reduced HFGMC 

 

Consider the HFGMC system of equations given by Eq. 3 (referred to herein as 

the reference solution). As a result of performing POD, an approximate solution for U 

can be expressed by  where  can be referred to as the order-reduced solution 

vector. This approximate solution is substituted into Eq. 3 and results in an 



overdetermined system of linear equations (n equations with k unknowns, k < n) and a 

residual, r. 

 
 

 (5) 

The residual effectively contains contributions that fall outside of the subspace 

spanned by . This implies that  since each basis vector in  is orthogonal to 

r (i.e., the contribution from the remaining basis vectors in V). The residual can be 

eliminated from Eq. 5 by multiplying each side by . This imposes the orthogonality 

constraints on the residual and results in a reduced set of k x k equations. 

 

  (6) 

In effect, the same basis vectors are used both for approximating the reference 

solution and performing the projection to the reduced system. This is commonly 

referred to as Galerkin-based POD. However, for nonlinear problems, a Galerkin 

projection method can lead to numerical instabilities, and a Petrov-Galerkin projection 

can be used to overcome these instabilities [16]. Rather than performing the projection 

by multiplying Eq. 5 by , it can be multiplied by  resulting in a reduced set of 

k x k equations. 

 

  (7) 

It should be noted that in order to set up the reduced set of equations, the n x n 

matrix K and n x 1 vectors f and g must be determined. The k x k reduced stiffness 

matrix, , will only change if subcell properties are updated (e.g., due to 

a temperature change, damage, etc.). The approximate reference solution can be 

recovered by using the relationship  once Eq. 7 is solved. In effect, the 

original set of n = 6NβNγ equations can be converted into a potentially much smaller 

set of k equations and solved. However, by only including k of the n orthonormal basis 

vectors, an error is introduced. The goal of an order-reduction technique in this context 

is to determine the smallest system of equations while minimizing the approximation 

error. An accurate reduced model can likely be generated provided that the 

orthonormal basis vectors capture the variation in input parameters. 

 

 

MICROSCALE SIMULATIONS OF THERMOINELASTIC COMPOSITES 

 

Analysis Details 

 

The computational efficiency of the order-reduced HFGMC method was evaluated 

for an E-glass fiber and Nylon 12 matrix composite system. The E-glass fiber was 

assumed to be isotropic and linear elastic and was assigned temperature-independent 

material properties [17]. The Nylon 12 matrix was assumed to be isotropic with an 

elastic-perfectly plastic material response and temperature-dependent material 

properties [18-19]. The applicable Young’s moduli (E), Poisson’s ratios (ν), secant 

coefficient of thermal expansions (CTE), and yield stresses (σy) are presented in 

Table I as a function of temperature (T). 

 



TABLE I. FIBER AND MATRIX CONSTITUENT PROPERTIES 

 

  T (°C) E (MPa) ν σy (MPa) CTE (μs/°C) 

Fiber - 74000 0.20 - 4.9 

Matrix 

-25 2100 0.36 54.0 158.0 

0 1400 0.36 43.9 158.0 

23 950 0.36 28.0 158.0 

50 480 0.36 18.0 158.0 

 

 

 
Figure 2. Four different randomized RUC architectures comprised of a) 256, b)1024, c) 2116, and d) 

5184 subcells where blue indicates a fiber subcell and green indicates a matrix subcell. 

 

Ricks et al. [8] previously demonstrated that the computational efficiency of the 

order-reduced HFGMC for linearly elastic constituents significantly depends on the 

number of subcells in the RUC. In this study, four distinct RUCs with a nominal 60% 

fiber volume fraction and a random microstructure were generated using a recently 

developed RUC generator [20]. These RUCs have 256, 1024, 2116, and 5184 subcells 

and are shown in Figures 2 a-d, respectively.  

In the HFGMC, a combination of global stress or strain components and 

temperature can be applied to an RUC. For this study, a 2% normal strain in the x2-

direction was applied over 150 loading increments to each of the four RUCs in 

Figure 2. With the exception of the axial stress in the x2-direction, all other stress 

components were set to zero. Additionally, a linear temperature increase from -25 °C 

to 50 °C was applied. The temperature and mechanical loads were imposed 

simultaneously in order to assemble and solve the HFGMC equations the maximum 

amount of times within a loading increment. Seven integration points per direction 

were assigned to each subcell. This number was found to be the minimum necessary 

to achieve convergence of the inelastic strain/stress field. A conservative number of 



iterations (i.e., 50) were performed for each increment. Since multiple unique RUCs 

were considered in this study, no robust criterion was specified to establish 

convergence of the inelastic fields. Rather, preliminary analyses were performed to 

determine the appropriate number of iterations necessary for convergence for all 

RUCs. By basing convergence on a fixed number of iterations, an appropriate 

comparison of the computational cost for the different RUCs can be performed 

without having to consider whether less/more iterations were required for a particular 

RUC analysis. 

 

Generation of the Order-Reduced HFGMC Models 

 

As previously mentioned, the method of snapshots was used to determine the 

orthonormal basis vectors required to approximate the reference solution and project 

to the reduced subspace. This technique requires that the solution to each of HFGMC 

system of equations be obtained at a number of time/loading intervals. These basis 

vectors are substituted into Eq. 7 and used to generate an order-reduced model. This 

process was performed offline prior to performing an analysis of interest. For linearly 

elastic materials without any temperature change, the effective elastic stiffness tensor 

was calculated when generating the snapshots. This tensor can be stored and used to 

eliminate the need to calculate the mechanical strain concentration tensor in the order-

reduced HFGMC. Additionally, since no inelasticity is permitted when considering 

only linearly elastic materials, this practically implies that the HFGMC system of 

equations is only required to be solved once per increment (no need for an iterative 

procedure). As such, Ricks et al. [8] demonstrated that a single order-reduced model 

can accurately and efficiently represent the full HFGMC system of equations.  

However, when thermoinelastic materials are considered, multiple unique 

HFGMC systems of equations must be repeatedly assembled and solved. Preliminary 

analysis results indicated that a single order-reduced model should not be used for all 

eight unique sets of equations (i.e., it was not accurate and computationally efficient). 

As such, separate, smaller models were generated for each set of equations. In order to 

establish the eight order-reduced models, the converged solution at each of 150 

increments for each set of equations was used to populate eight snapshot matrices (one 

for each unique set of equations). The previously described loading conditions were 

applied to each RUC. An SVD was performed on each snapshot matrix and was used 

to generate a set of orthonormal basis vectors. Figure 3 contains a plot of the first 30 

singular values associated with each of the eight order-reduced models for the 256 

subcell RUC (i.e., Figure 2a). Similar plots were obtained for the other RUCs. Each of 

the models show a rapid decay in the magnitude of the singular values. This suggests 

that accurate order-reduced models can be likely be generated using a small number of 

basis vectors. Conceivably, each of the eight order-reduced HFGMC models for a 

given RUC can require a distinct number of basis vectors. Since the plot of the 

singular values was similar for the first six models (used to establish effective 

properties) and the boundary conditions are similar, a constant number of basis vectors 

was used for the first six models. Similarly, a different number of basis vectors was 

used for the remaining two models (used to solve the actual boundary value problem). 

Future studies will investigate more robust methods to establish the appropriate size of 

each order-reduced model within HFGMC. 

 



 

 
Figure 3. Singular values of the snapshot matrix for each set of simultaneous equations. 

 

Assessment of the Order-Reduced HFGMC Models for Determining Effective 

Properties 

 

The accuracy of the order-reduced models was assessed by performing multiple 

simulations, each with a different number of basis vectors. Recall that the first six 

order-reduced models are used to establish RUC effective properties. Since these 

properties influence the global fields, the error in the effective elastic stiffness and 

thermal stress tensors was first determined by performing a series of analyses using 

one to ten basis vectors. Recall that for this study, the effective properties do not 

depend on inelastic state or applied mechanical loading and are only a function of 

temperature. Hence the temperature was varied over 150 increments consistent with 

the previous analyses and only the effective properties were determined at each 

temperature. The error at each increment (temperature) was calculated using the 

following relationship: 

 

 

(8) 

 

where A represents either the vectorized effective elastic stiffness tensor or the 

effective thermal stress tensor and the subscripts R and OR correspond to the reference 

or order-reduced vectors, respectively.  denotes the L2-norm. Figure 4 contains the 

error in the effective elastic stiffness tensor at each increment for multiple sizes of the 

order-reduced models. The error was observed to be relatively constant as the 

temperature varied for a given model. Furthermore, as the number of basis vectors 

used in the order-reduced models increased, the error steadily decreased. Similar 

trends were observed for the error in the effective thermal stress tensor. Since both the 

effective elastic stiffness and thermal stress tensors are calculated using the 

mechanical strain concentration tensor [1], the two tensors have similar errors for 

order-reduced models with the same number of basis vectors. Analogous error 

estimates in the effective properties for the remaining RUCs were obtained and closely 

resembled those of the 256 subcell RUC. Hence, for all RUCs, k = 5 was determined 

to yield accurate effective properties and was used in subsequent assessments of the 

subcell/global fields. Effectively, the first six order-reduced models involved solving a 

dense set of k = 5 equations while the reference model was comprised of a highly 



sparse set of n = 1536-31,104 equations depending on the RUC architecture 

considered. 

Assessment of the Order-Reduced HFGMC Models for Determining 

Global/Local Fields 

 

In order to assess the accuracy of the remaining two order-reduced models for 

each RUC architecture, the global and subcell stress fields were evaluated for multiple 

order-reduced models where the size varied from k = 1-25. As previously mentioned, 

each of these two models used the same number of basis vectors for a given 

simulation. The error was calculated using Eq. 8 where A now represents the 6 x 1 

global or subcell stress vector. The average error in global stresses across all iterations 

for a given size order-reduced model are plotted in Figure 5. The error in subcell 

stresses was averaged across all iterations and subcells and is also shown. In general, 

as the size of the order-reduced models increased, the average error in both the global 

and subcell stresses decreased. Additionally, the average error in subcell stresses was 

typically greater than that of the global stresses. Minor differences in the order-

reduced approximations are more likely to result in a greater error in the local, subcell 

stress fields rather than the global, homogenized stress field. This also suggests that, in 

general, a larger size order-reduced model is likely required to obtain more accurate 

subcell fields than global fields. However, for the RUCs considered in this study, a 

similar level of accuracy in global and subcell fields can be obtained for the same size 

order-reduced model. As the RUC complexity is increased, no clear trend in the error 

is obvious. For instance, 11 basis vectors are required to generate 99% accurate order-

reduced models for the 1024 subcell RUC while 9 are required for a more complex, 

5184 subcell RUC. Hence the optimal size of the order-reduced models is likely 

problem specific and driven by local features (i.e., regions of intense inelasticity). 

Some local instabilities were also observed for the 5184 subcell RUC for smaller 

order-reduced models (k = 3,4). In both cases, the model became unstable near the 

maximum applied load. This issue is currently being investigated. 

The computational efficiency of the order-reduced models was assessed for each 

RUC architecture. Since it is computationally intensive to write individual subcell 

level information to data files, the efficiency of the reference and order-reduced 

models was determined by suppressing all subcell output and repeating the above 

analyses. The time spend assembling/solving the HFGMC systems of equations was 

determined for the reference model and the order-reduced models. Recall that the 

order-reduced model requires mapping to and from the order-reduced system of 

equations at each increment/iteration (i.e., additional matrix multiplications are 

required). The computation runtimes for the order-reduced models include both the 

time needed to perform the mapping and solution of the equations. Speedup factors 

were calculated by dividing the reference solution runtime by the order-reduced 

runtime. The speedup factors calculated from the assembly/solution runtimes are 

shown in Figure 6 for order-reduced models with up to 15 basis vectors. In all of these 

simulations, the first six HFGMC systems of equations was of size (k = 5) as 

previously mentioned. Regardless of the RUC, as the size of the order-reduced model 

increased, the speedup decreased as would be expected. However, relatively small 

order-reduced HFGMC models (10 < k < 25) generally required more time to run than 

the reference model. For example, while the 1024 subcell RUC order-reduced models 

with 9 basis vectors gave less than a 1% error in stress fields, it required 



approximately the same amount of time to run as the reference solution. However, for 

all of the RUCs, there was a small window where modest computational savings can 

be achieved at the expense of some accuracy. For instance, the order-reduced models 

(k = 6) for the 2116 subcell RUC had a speedup factor of approximately 1.5 and 

yielded 99% accurate stresses. The lack of significant speedup in general is likely an 

artifact of the HFGMC solution process. For the reference model, the core 

computational effort involves assembling and factoring the stiffness matrix and is 

performed only once per increment (if a temperature change occurs). In the order-

reduced models, the full stiffness matrix is assembled once per increment as well. 

However, the mapping operations required to generate the order-reduced systems of 

equations are performed eight separate times per increment. This repeated mapping 

underscores the need for more computationally efficient assembly/mapping algorithms 

(e.g., direct assembly [11-12]) in order to further assess the usefulness of order-

reduction techniques to HFGMC. Such techniques can allow the order-reduction to be 

applied on the subcell level (size k) rather than continually mapping to and from the 

original global level (size n) [12]. Ongoing work is focused on developing these 

procedures. 

 

 
Figure 4. Error in the effective elastic stiffness tensor for the 256 subcell RUC at each increment for 

multiple order-reduced models. 

 

 

 
Figure 5. Average error in the global/subcell stresses for each RUC for multiple order-reduced models. 

 



 
Figure 6. Speedup factors for each RUC as the order-reduced model size increases. 

 

 

CONCLUSIONS 

 

In this study, the High-Fidelity Generalized Method of Cells (HFGMC) global 

system of n x n equations for doubly-periodic repeating unit cells (RUCs) with 

thermoinelastic constituents was reduced in size through the use of proper orthogonal 

decomposition with Petrov-Galerkin projection. The reduced k x k system of equations 

(k << n) was compared to the unmodified HFGMC equations for micromechanics 

models four distinct RUCs of increasing complexity (256 to 5184 subcells). For all 

RUCs, relatively small order-reduced models were found to accurately reproduce 

effective properties (k = 5) and global/subcell stresses (k = 6-11). A speedup of 1.2-1.5 

in several RUCs was achieved while maintaining accuracy. However, the order-

reduced models were not computationally feasible once the size exceeded k = 10. 

Current work is aimed at further improving the computational efficiency of the order-reduced 

HFGMC by performing order-reduction at the subcell level rather than the global level. 
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